
**** microservices
Radan Skorić

When is it smart to break
you application into

microservices?

Drumroll

It depends!
On your project …

Thank you!
Questions?

Pros/Cons
They are closely related!

Complexity
• Smaller code size per

service makes it easier to
understand.

• Smaller more focused test
suite.

• Agility of the small
application.

• Harder to develop large
features.

• High interdependency
gets hidden in complex
communication.

• Must reduce the chatter.

• Harder to create
integration tests.

Deployment
• Can deploy each service

independently.

• Can scale each service
independently.

• Can better handle total
failure of one service (if
correctly designed).

• Need to setup deployment
of each service
independently.

• Harder to maintain full
system uptime (0.99^6 =
0.94).

• Need to build handling for
communication failures.

Flexibility

• Polyglot development.

• Can easily rewrite entire
service if needed.

• Harder to move
developers between
services.

Culture
• Team has higher sense of

ownership.

• Logical business
boundaries are more
clearly reflected in code.

• Easier for stakeholder to
build a relationship with
the team.

• Teams might put
functionality in their service
just because it is easiest to
do.

• Very hard to rework the
boundaries.

• Conway’s law.

Things look better when
you look at one service
Things look worse when

you look at the entire
system

Mostly! You know what I mean, don’t troll me. :)

Getting boundaries right is
very very important

• You will probably underestimate the surface area.

• There is a hefty price attached to fixing it.

• Unless you have trivial boundaries and an
experienced team, start with a monolith and chip
away the services when it becomes painful.

• Be ready to refactor across services.

Thank you
this time for real

